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1 Galois groups

1.1 Field extensions

Even if you don’t know the definition of a field, you surely know many examples of them. For
example, here are some commonly used ones.

Q,R,C,Q(
√

2),Q(
3
√

2, i),Q,C(t),Fp,Fpk

Essentially, what makes these sets fields is the fact that there are two operations+, ·which
satisfy commutativity, associativity, and distributivity, which also have inverses – with the im-
portant exception of 0 not having a multiplicative inverse.

Let’s consider the basic case of R ⊂ C. The way we get from R to C is by defining a number
i to satisfy i2 = −1, and constructing all numbers of the form a+ bi; a, b ∈ R. But once we have
constructed C, we note that we could have just as easily have chosen −i in place of i to use to
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construct C from R. This ambiguity is described by the automorphism group Aut(C/R) ∼=
Z/2Z.

Definition 1.1. A field automorphism σ ∈ Aut(K) is a surjective field endomorphism. The group
Aut(L/K) denotes the subgroup of Aut(L) that fixesK.

Exercise 1.1. Show that all field homomorphisms are injective.
There is another basic property of field extensions: the degree. If L/K is a field extension,

then the degree [L : K] is given by the dimension of L when considered as a vector space over
K. For instance, [C : R] = 2.

Example 1.2. Q( 3
√

2, i)/Q( 3
√

2),Q(i)/Q. Fpk/Fp.

1.2 Galois extensions

This process of taking a field and ‘adjoining’ a new element that is prescribed to fulfill some
polynomial equation is a very common way of producing field extensions. Not all field ex-
tensions can be constructed in this way – that is, some field extensions are not algebraic.
For example, consider the field extension R/Q. The element π ∈ R is transcendental over Q,
meaning it is not the root of any polynomial with coefficients in Q. Here we will be interested
only in algebraic extensions.

Given any field extension L/K, we may consider its automorphism group Aut(L/K). For
any subgroup G ⊂ Aut(L/K), we may also consider the subset of L fixed by G, denoted LG.
For example, L{e} = L andK ⊂ LAut(L/K).

Definition 1.3. LetL/K be an algebraic field extension. We say it is aGalois extension ifLAut(L/K) =
K. In this case, we write Gal(L/K) = Aut(L/K).

For example,Q[ 3
√

2]/Q is not Galois. A more field-theoretic definition is as follows: L/K is
Galois if it is normal and separable. This essentially means that every irreducible polynomial
of degree n with coefficients in K and a root in L has all n roots in L (normality) which are
all distinct (separability). For finite Galois extensions, another criterion is that |Aut(L/K)| =
[L : K].
Exercise 1.2. If L/K is finite, show that |Aut(L/K)| ≤ [L : K].

The general theory of finite Galois extensions is summarized by the fundamental theorem
of Galois theory, which state that subgroups of a Galois group L/K correspond bijectively to
sub-extensions L ⊂ E ⊂ K, under the maps

G 7→ LG, E 7→ Gal(L/E).

Moreover, normal subgroups correspond to Galois subextensions E/K.
Remark. There is still a very interesting sort of Galois theory in the case of some transcendental
equations, but it is much more difficult and mysterious. Some keywords are Grothendieck’s
period conjecture and the motivic Galois group, yet more contributions of Grothendieck
that are far outside the scope of this talk.
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1.3 Infinite Galois theory

Things start to get evenmore interesting whenwe consider infinite Galois extensions. Because
Galois extensions are by definition algebraic, an infinite Galois extension is a union of finite
Galois extensions. Two key examples are the field extensions Fp/Fp and Q/Q. We have

Fp =
⋃
n≥1

Fpn , Q =
⋃

K/Q finite Galois

K

and

Gal(Fp/Fp) = lim←−
n≥1

Gal(Fpn/Fp) ∼= Ẑ, Gal(Q/Q) = lim←−
K finite Galois

Gal(K/Q) ∼= ???

Let’s explain the first one. First, Fpm ⊂ Fpn if and only if m|n. In particular, if m|n, then
each element of Gal(Fpn/Fp) restricts to an element of Gal(Fpm/Fp). Each individual group
Gal(Fpn/Fp) ∼= Z/nZ, generated by the Frobenius automorphism x 7→ xp. Now to give an
element σ ∈ Gal(Fp/Fp) is to give an automorphism σn ∈ Gal(Fpn/Fp) for each n. Moreover,
these σn must be compatible, which in this case means that the reduction of [σn] ∈ Z/nZ to
Z/mZmust coincide with [σm] ∈ Z/mZ.

The fundamental theoremofGalois theory does not hold as stated in thefinite case. Indeed,
consider the fixed field of the subgroup 〈φ〉 generated by the Frobenius automorphism. This is
simply Fp, so under the supposed inverse bijections 〈φ〉 would correspond to the entire group
Ẑ. THis is saying that the natural inclusion Z ↪→ Ẑ is surjective, which is false!
Exercise 1.3. Construct an element x ∈ Ẑ\Z.

Thus, the structure involvedhere ismore subtle. InfiniteGalois groups areprofinite groups
– projective (inverse) limits of finite groups. Such groups naturally come with a profinite
topology. Namely, we equip eachGi with the discrete topology, give

∏
iGi the product topol-

ogy, and give G = lim←−iGi ⊂
∏
iGi the subspace topology. Equivalently in the case of a Galois

groupGal(Ω/K), onemay take a open neighborhood of id to be the subgroupsGal(Ω/L)where
L/K is finite. Then the fundamental theorem of Galois theory gives a bijection between sub-
fieldsK ⊂ L ⊂ Ω and closed subgroups of Gal(Ω/L).

For example, in the case of Gal(Fp/Fp), the closed subgroups are given by Gal(Fp/Fpk),
which correspond to the elements of Ẑ that are divisible by k. The case ofGal(Q/Q) is signifi-
cantly more complicated, and lies at the heart of arithmetic geometry and number theory.

2 Fundamental groups

2.1 Path description

LetX be a topological space. In algebraic topology, one assigns algebraic invariants – such as
groups – to topological spaces. Wewould like them to be invariant on homeomorphism classes,
and even stronger, on homotopy classes. Thismeans that they should be defined on the (naïve)
homotopy category, where morphisms between spaces are given by homotopy classes of con-
tinuous maps. This means that two spacesX and Y are homotopy equivalent if there are maps
f : X → Y and g : Y → X such that g ◦ f and f ◦ g are homotopic to idX and idY , respectively.

For example, homeomorphic spaces are always homotopy equivalent. R2−{∗} is homotopy
equivalent to S1, and R2 − {2 points} is homotopy equivalent to S1 ∨ S1.
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Now take two paths f, g : I → X with the same beginning and endpoints. We say that f and
g are path homotopic if there is a continuousmapH : I×I → X withH(0, t) = f(t), H(1, t) =
g(t), andH(s, 0) = f(0) = g(0), H(s, 1) = f(1) = g(1).

Definition 2.1. Take a point in a topological space x ∈ X. Then π1(X,x) is defined to be the group
of paths in X beginning and ending at x modulo homotopy of paths, with composition of paths as
the group operation.

We are generally interested in the case whenX is path-connected, in which case different
basepoints will give isomorphic fundamental groups by ‘conjugating’ via a path between x and
y. The fundamental group is a functor in a natural way, and it is easily seen to be a homotopy
invariant. In this case we can speak of π1(X) as an isomorphism class of groups. One of the
most fundamental computations is that

π1(S
1) ∼= Z, π1

(∨
n

S1
)
∼= Fn,

where Fn is the free group on n generators. Because fundamental groups are homotopy invari-
ant, this means that

π1(R2 − {∗}) ∼= Z, π1(R2 − {2 points}) ∼= F2.

2.2 Covering spaces

The previous approach to fundamental groups is fine, but there is another powerful perspective
which is more important for our purposes. This is the theory of covering spaces.

Definition 2.2. A covering space p : Y → X of X is a topological space Y equipped with a
surjective projection to X such that for all x ∈ X, there is a neighborhood U 3 x such that p :
p−1(U)→ U is a projection of disjoint isomorphic copies of of U down to U .

Covering spaces are analogous to field extensions, with the degree of a covering space being
the magnitude of the preimage of a single point of the base – this is well-defined if the base
is connected. We may also try to define their homomorphisms and automorphism groups.
Indeed, a morphism of covering spaces is just a continuous map between them that commutes
with their projections to X. In this way, we can define the automorphism group of a covering
space AutX(Y ). One might also hope for there to be an ‘absolute’ covering space, similar to
an algebraic closure. This exists under some mild conditions, and is known as the universal
covering space.

Proposition 2.3. LetX be a path-connected, locally path-connected, and semilocally simply con-
nected topological space. (This includes connected manifolds and connected CW-complexes.) Then
there exists a unique simply connected covering space X̃ of X up to isomorphism, known as the
universal covering space ofX.

The construction of X̃ essentially proceeds by letting each point of X̃ be a homotopy class
of a path in X beginning at a basepoint x ∈ X. The conditions on X allow us to topologize
this set naturally and appropriately. Fix X as above. It is useful to fix a universal cover and
basepoints: p : (X̃, x̃) → (X,x). Now we can state the classification of covering spaces and
explain how it relates to the fundamental group.

Proposition 2.4. (a) π1(X) ∼= AutX X̃.
(b) The isomorphism classes of covering spaces q : (Y, y) → (X,x) are in bijection with the

subgroups of π1(X,x) by the map

Y 7→ q∗(π1(Y, y)) ⊂ π1(X,x).
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Part b is the analogue of the fundamental theorem of Galois theory: we have a bijection
between coverings and subgroups of the automorphism group. Moreover, normal subgroups
correspond to Galois covering spaces, which are ones whose automorphism group acts transi-
tively on fibers. This is the analog of the condition that |Aut(L/K)| = [L : K]. Let us look at
some covers of our examples S1 and S1 ∨ S1.

Remark. The theory of covering spaces is clarified significantly by considering the fiber functor
Fx : Cov/X → Set. This perspective is also important in many generalizations, such as to
schemes. It only uses basic category theory and is not too complicated, but unfortunately we
will not discuss it here for lack of time.

3 The étale fundamental group

3.1 Étale morphisms

Our present goal is to, following Grothendieck, define a fundamental group for schemes that
encapsulates both the Galois theory of fields and the topological fundamental group. First, we
will define the analogue of a covering space: an étale cover. These are supposed to be local
isomorphisms (in a way that will be made precise later). For this, we need the notions of flat
and unramified morphisms. These notions (flat, unramified) are local.

Definition 3.1 (flat morphism). We say f is flat at x ∈ X if f# : OY,f(x) → OX,x gives a flat
OY,f(x)-module structure on OX,x.

Example 3.2. Affine space is flat; i.e., AnA → SpecA. However, Spec k[x, y]/(xy) → Spec k[x] is
not flat. This illustrates the fact that fibers of flat morphisms are equidimensional.

In general, we have free ⇒ projective ⇒ flat. For finitely generated modules over local
rings, these are all equivalent.

Ramification is the phenomenon of multiplicity. Algebraically, we say that φ : A → B is
unramified if it is of finite type and ΩB/A = 0. Similarly, consider a morphism of schemes
f : X → Y .

Definition 3.3 (unramified morphism). We say f is unramified if f is locally of finite type and
ΩX/Y = 0.

There are other characterizations of unramified morphisms which may be more useful in
various situations. For example, the first one is sometimes taken as the definition.
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Proposition 3.4. Let f : X → Y be a morphism of schemes that is locally of finite type. Then the
following conditions are equivalent to f being unramified.

1. If f(x) = y, then k(x) is a finite separable extension of k(y) and myOX,x = mx.

2. ΩX/Y = 0.

3. The diagonal map∆ : Y → X ×Y X is an open immersion.

Definition 3.5. An étale morphism is one that is flat and unramified.

Intuitively, flatmaps are those whose fibers have the same dimension, and unramified ones
are those with no multiple points. As flat and ramified are both local conditions, so is étale,
so we may speak of a morphism being étale at a point. An étale cover is a surjective étale
morphism.

For example, the finite étale covers of SpecK are given by unions of finite separable ex-
tensions ∪SpecL. As another example, the normalization of the nodal cubic: Spec k[t] →
Spec k[x, y]/(y2 − x3 − x2) given by x 7→ t2 − 1, y 7→ t3 − t is unramified but not flat. On the
other hand, flat maps that lower the dimension will not satisfy the finiteness condition of un-
ramified morphisms.

A key example of étale morphisms is given by the standard ones.

Definition 3.6 (standard étale morphism). Take b ∈ B = A[T ]/P (T ) such that P ′(T ) is a unit
in Bb. Then φb : SpecBb → SpecA is a standard étale morphism.

For example, the map Spec k[x, y]/y − x2 → Spec k[y] is a standard étale morphism if you
take away the origin. In fact, every étale morphism is locally standard étale. A key input to the
proof is Zariski’s main theorem. This fact implies that dimension, normality, and regularity
are preserved under étale morphisms. For details, again see [?], Section I.3.

Let us now briefly explain how this definition relates to the notion of being a local isomor-
phism. Let k be an algebraically closed field and let f : X → Y be a morphism of smooth
varieties over k. In this context, we can define the tangent spaces as simply a space of solu-
tions to linear equations, and we obtain the map df : TxX → TyY . If we wish to extend this
idea to singular varieties, we can replace the tangent space with the tangent cone. One then
shows that an isomorphism of tangent cones is equivalent to an isomorphism of completed
local rings: f̂x : ÔY,f(x) → ÔX,x. Using the standard étale characterization, one can prove that
this is indeed equivalent to f being étale at x.

3.2 The étale fundamental group

In this section, we will define Galois covers, a class of finite étale covers that will pro-represent
the fiber functors. We will use S to denote a connected scheme, which will be the base scheme.

Given a finite étale morphism φ : X → S, we can define the degree of φ to be the cardinal-
ity of φ−1(s) ⊂ X, where s is a geometric point of S. In fact, let φ : X → S be a finite étale
morphism withX connected. Then one can show there is a positive integer n such that for all
geometric points s of S, we have |φ−1(s)| = n.

In accordance with the topological situation, we have that if p ∈ AutS(X) has a fixed point,
then it must be the identity. More generally, two morphisms from a connected S-scheme
to a finite étale S-scheme that agree on a geometric point must be equal. This implies that
|AutS(X)| ≤ n.
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Definition 3.7 (Galois cover). We call an étale cover p : X → S Galois if |AutS(X)| = n, where
n is the degree of p.

Remark. One does not even need the notion of degree for all this, as one can just define Galois
covers to be the ones for which the automorphism group acts transitively on geometric fibers.

In general, there does not exist a universal cover that we can use to define the étale funda-
mental group. However, taking inspiration from the fact that

Gal(K/K) ∼= lim←−
L/K finite Galois

Gal(L/K),

we can try to express πet1 (X) as a suitable inverse limit. We will precisely use the Galois covers
in this inverse limit. Inmore detail, if {Xi}i∈G are the Galois covers of S, then first we order the
Xi so that Xi ≤ Xj if there is an S-morphism φij : Xi → Xj . In this case, since Xi and Xj are
Galois, there will be a surjective group homomorphism AutS Xi → AutS Xj . This essentially
comes by quotienting out AutXj Xi.

Definition 3.8. Let S be a connected scheme and let Xi be the finite Galois covers of S as con-
structed above. Then the étale fundamental group of S is defined as

πet1 (S, s) := lim←−AutS(Xi).

3.3 Examples

Let us now justify why the étale fundamental group deserves its name by some examples. We
have already essentially explained the following.

Proposition 3.9. π1(SpecK) = Gal(K/K).

Theorem 3.10. Let X be a connected scheme of finite type over C. The functor X 7→ Xan is an
equivalence of categories between finite étale covers ofX and finite topological covers ofXan. Thus
we obtain an isomorphism

̂π1(Xtop, x) ∼= π1(X,x).

For instance, πet1 (A1
C) = 1, πet1 (SpecC[x](x)) ∼= Ẑ and πet1 (P1

C − {0, 1,∞}) ∼= F̂2.

Theorem 3.11. Let k ⊂ K be an extension of algebraically closed fields and let X be a proper
integral scheme over k. Then the natural map

π1(XK , xK)→ π1(X,x)

is an isomorphism.

This is useful whenwewant to pass from, say,Q toC. In particular, πet1 (P1
Q−{0, 1,∞})

∼= F̂2.

Next, Grothendieck showed the existence of a remarkable theorem which connects the
arithmetic and geometry of étale fundamental groups.

Theorem 3.12. Let X be a quasi-compact, quasi-separated, and geometrically integral scheme
over a fieldK. Then we have the following short exact sequence:

1→ πet1 (XK)
i−→ πet1 (X)

j−→ πet1 (SpecK)→ 1.

What makes this so remarkable (e.g. when K = Q) is that it splits up the middle étale
fundamental group into something geometric on the left and something arithmetic: Gal(K/K)
on the right.

7



Caleb Ji Introduction to anabelian geometry 10/13/21

4 Regular polyhedra over finite fields and dessins d’enfants

4.1 A new perspective on polyhedra

Let’s instead talk about something seemingly quite unrelated...

Take some graph G embedded on some real surfaceX. We call the resulting configuration
(X,G) a map. A map has faces, edges, and vertices. Define a flag of (X,G) to be a choice of
a face, an edge of that face, and a vertex of that edge. Now whatever (X,G) we take, there is
going to be a transitive action on the set of flags by the cartographic group1

C2 = 〈σ0, σ1, σ2|σ20 = σ21 = σ22 = (σ0σ2)
2 = 1〉.

These operations σ0, σ1, σ2 correspond to the reflection of the chosen vertex, edge, and face,
respectively. There is also an action of the oriented cartographic group

C+
2 = 〈ρv, ρf , ρe|ρ2ρ0 = ρ1, ρ

2
1 = 1〉

where ρ0 = σ1 ◦ σ2, ρ1 = σ0 ◦ σ2, ρ2 = σ0 ◦ σ1. Thus, ρ0, ρ1, ρ2 correspond to the rotation of the
flag around the vertex, edge, and face, respectively. Draw a picture!

An alternate way of presenting this group is by the relations ρ0ρ1ρ2 = 1, ρ21 = 1.

Now when do we get a regular polyhedron? Precisely when its automorphism group acts
transitively on its flags. We see that every pair of integers p, q ≥ 1 gives rise to a unique con-
nected map by imposing the additional relations

ρp0 = ρq2 = 1

on its automorphism group. We see that, after pinning down a flag, this automorphism group
determines the polyhedron. In particular, p is the number of faces to a vertex and q is the num-
ber of edges to a face. Try some examples!

Immediately we see hat not all the regular polyhedra we get in this way are Platonic solids.
Rather, only the compact ones are; i.e. those realizable on a sphere. These are the ones with
finite automorphism group. The others give regular tilings of either the Euclidean plane or the
hyperbolic plane. In fact, this approach leads to an easy classification of Platonic solids!

1Beware, my conventions differ slightly from Grothendieck’s in the Esquisse; here I consider the elements as
operators so I multiply in the opposite direction.
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Exercise 4.1. Determine which p and q give rise to spherical (Platonic) maps, Euclidean tilings,
and hyperbolic tilings. (Hint: Calculate some angles.)

This is a nice way of looking at things, and moreover it provides a framework for additional
ideas to give some truly new phenomena! In particular, it allows us to consider regular poly-
hedra in characteristic p, or over any base ring! This comes through the following observation:
the formulas for the fundamental reflections σi can be written in terms of universal for-
mulae in terms of the cosines of the angles of the polyhedron!

Indeed, fixing a flag v0, v1, v2, we have

σ0(v0) = 2v1 − v0,
σ1(v1) = (1− cos θ)v0 − v1 + (1 + cos θ)v2,

σ2(v2) = (1− cos γ)− v2.

The data of the polyhedron is completely contained in these values of cos θ and cos γ. Thus,
taking any base field, we may substitute any pair of values for them and obtain a regular poly-
hedron! Note that there will bemany of these which all correspond to p = q =∞. In particular,
we may specialize from the field R to finite fields! For instance, in the case of the octahedron,
we have cos θ = 1/2, cos γ = −1/3. For 6 - q, we see that we can specialize these values to Fq,
and therefore obtain an octahedron over Fq! This has the same automorphism group as the
ordinary octahedron2.

However, as Grothendieck writes, the situation is entirely different if we start with an in-
finite (i.e. Euclidean/hyperbolic tilings) regular polyhedron! Then when we specialize it to
Fq, the fact that polyhedra over finite fields must necessarily be finite implies that we get an
infinite number of finite regular polyhedra as q varies, whose automorphismgroup varies arith-
metically with q!

The richness of this discovery leads in many directions. Grothendieck describes a certain
(apparently) incredible phenomenon that occurs when specializing polyhedra under singular
characteristics. I have not yet been able to decipher what he means by this. Another set of
questions arises once we consider a Galois action of Gal(Q/Q) on these maps. This Galois
action is extremely nontrivial and interesting, and we will now explain it.

4.2 Dessins d’enfants

Let us denote Gal(K/K) by GK . Recall that GQ is this deep mysterious group at the center
of number theory. On the other hand consider dessins d’enfants: bicolourable maps (X,G),
whereX is compact. The upshot is that there is a natural correspondence between

{dessins d’enfants}/ ∼= ⇔ {algebraic curves defined over Q}/ ∼=

It goes as follows. First, every flag (X,G) corresponds to a clean dessin; that is, one where
every white vertex has degree 2, simply by placing a white vertex in the middle of every edge.

2Grothendieck seems to claim this; I haven’t checked it.
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Note that if we are considering oriented flags, every such flag is associated to a unique edge
between a black andwhite vertex. Thus we can describe the action of the oriented cartographic
group simply on these edges. We can extend this action to all dessins, not just the clean ones.
Looking at the definition given before, in terms of edges we are rotating them around black
and white vertices. These two operations generate a free group F2 on two elements.

We will now see how to go from a dessin to an algebraic curve defined over Q. First, note
that since the dessin is finite, F2 acts by a finite quotient, so we in fact have an action of F̂2

on the edges. Fix an edge E of the dessin (X,G) and consider its stabilizer subgroupH ⊂ C+
2 .

This subgroup is well-defined up to conjugacy. Moreover, the dessin can be reconstructed from
this stabilizer. Now note that F2

∼= π1(P1
C − {0, 1,∞}. By the correspondence between con-

jugacy classes of subgroups of the fundamental group and topological covers, we obtain a bi-
jection from dessins to covers of P1

C − {0, 1,∞}. Then, by the Riemann existence theorem this
corresponds to a unique algebraic curve X with a morphism β : X → P1

C ramified only at the
three points {0, 1,∞}. Finally, by somenontrivial algebraic geometry, one shows that algebraic
curves admitting such a map can be defined over Q. Thus, we have shown how to canonically
get an algebraic curve defined over Q from the combinatorial data of a dessin!

But there’s even more: do we get all algebraic curves defined over Q his way? The answer
is yes, and is given by Belyi’s theorem.

Theorem 4.1 (Belyi’s theorem). Every complex algebraic curve definable over Q admits a mor-
phism to P1

C ramified only at 0, 1,∞.

Finally, one sees that by composing β with themap z 7→ 4z(1−z), one obtains amap fromX
still ramified only over {0, 1,∞}, but with ramification index exactly 2 over the point 1. In this
way, we get a bijection between isomorphism classes of clean dessins and ‘clean Belyi pairs’
(X,β). In fact, it can be visualized in the following way. Given β : X → P1

C, the preimages of
0, 1,∞ are precisely the vertices, midpoints of edges, and centers of faces of the corresponding
map.

4.3 The Galois action

What is the significance of all this? It comes from the fact that there is a natural action of GQ
on algebraic curves defined over Q! For example, in genus 0 the Belyi morphism β is given by
some rational function with algebraic number coefficients, which GQ acts on. The incredible
thing is that GQ acts faithfully on the set of dessins! This means that every element σ ∈ GQ
can be seen through its action on these graphs on surfaces! As a matter of fact, more is true –
the Galois action is faithful on genus 0 dessins, and in fact even on trees!3.

The way one approaches this is by tracing out the action of GQ, and seeing that it comes
from the fancy exact sequence from the previous section! Indeed, given the exact sequence

1→ πet1 (XQ)
i−→ πet1 (XQ)

j−→ GQ → 1

we obtain an outer automorphism

GQ → Out(πet1 (XQ)).

When we takeX = P1
Q − {0, 1,∞}, we have that this homomorphism is injective.

Theorem 4.2. The outer representation ρ : Gal(Q) → Out(π1(P1
Q − {0, 1,∞}))

∼= Out(F̂2) is
injective.

3A proof may be found in Leila Schenps’s Dessins d’enfants on the Riemann sphere
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Proof. If ρ has nontrivial kernel, then say it fixes L ⊂ Q. Then Gal(L)must act trivially on F̂2.
This action comes from conjugation in the sequence

1→ F̂2 → π1(P1
L − {0, 1,∞}).

Triviality means that the image of F̂2 and its centralizer must generate π1(P1
L−{0, 1,∞}). But

since F̂2 has trivial center, this implies that π1(P1
L−{0, 1,∞}) is their direct product. Now recall

that the finite continuous left F̂2 sets correspond to the finite étale covers of P1
Q
− {0, 1,∞}.

The natural inclusion of π1(P1
Q − {0, 1,∞}) into π1(P

1
L − {0, 1,∞}) corresponds to the base

change of curves over L to curves over Q. Now that there is a section to this map, we get that
every curve over Q can be defined over L. But this is not the case; e.g. take an elliptic curve
with j-invariant outside L.

But there’s more! The existence of a rational point in P1
Q −{0, 1,∞}) gives by functoriality

a section in the exact sequence, which means that we may in fact lift this to an actual action
of GQ on F̂2. Thus there is an embedding

GQ ↪→ Aut(F̂2)

well-defined up to conjugacy. The fact this is an embedding means that GQ acts faithfully on
dessins. This is the birth of anabelian geometry.

5 Anabelian geometry and Grothendieck-Teichmüller theory

The basic idea of anabelian geometry is to study varieties through their fundamental groups,
especially in the presence of a rich action of the absolute Galois group on them. The term
anabelian refers to being very far away from being abelian, such as a free group. This is in
contrast to usual cohomological methods where the action of the Galois group is linear. The
unexpected richness of the original case ofX = P1

Q − {0, 1,∞} suggests that there are a lot of
new things to discover. In fact, even in this special case there has been an incredible amount
of great work, especially by Deligne, even without using the full structure of the fundamental
group...

5.1 Anabelian varieties

The structure of étale fundamental groups is deep enough in some cases to reconstruct the
original variety. That is, given knowing themap πet1 (XK)→ GK forK a global field, one should
be able to reconstruct XK . Varieties for which this is true are called anabelian varieties.
Grothendieck had a clear idea4 that hyperbolic curves are abelian; namely does for which χ =
2− 2g − ν < 0, where g is the genus and ν is the number of marked points. Mochizuki proved
this, and in fact proved more.

Theorem 5.1. Hyperbolic curves over finitely generated fields of characteristic zero are anabelian.

In particular, Mochizuki proved this over p-adic fields, whereas previously people had not
considered this extension. His proof is very complex and, among other things, uses Faltings’s
p-adic Hodge theory.

4Though we do not have any written proof by him
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5.2 The section conjecture

The study of rational points on varieties has been amajor topic inmathematics since antiquity.
The section conjecture provides a way to associate rational points to sections of the homotopy
exact sequence, which correspond to ‘path torsors.’ Indeed, we have an injective map

X(Q)→ H1(GQ, π
et
1 (X, b)) where s 7→ [πet1 (X, b, s)],

and the section conjecture states that this map is surjective.

We quote from The Grothendieck Conjecture on the Fundamental Groups of Algebraic Curves
by Hiroaki Nakamura, Akio Tamagawa, and Shinichi Mochizuki.

“Among those mathematicians who were involved with the anabelian philosophy
in its early years, the Grothendieck Conjecture appears to have been thought of as a
new approach toDiophantineGeometry, i.e., to the study of rational points on vari-
eties over global fields. The following argument is representative of this approach.
Suppose that wewish to show that a certain algebraic variety has only finitelymany
rational points. We then assume that there are infinitely many and attempt to de-
rive a contradiction by showing that any rational point arising as a “limit” of this
infinite set of rational points has various properties that are “too good to be true.”
In order to carry out this argument, however, one needs to know that the “limit”
exists. Since a field like a number field is not complete with respect to any nontriv-
ial topology, the existence of such a limit is by no means clear. On the other hand,
since Galois representations (as in (1.2)) are, in some sense, analytic objects, it is
comparatively easy to show that a sequence of such Galois representations always
has a convergent subsequence (i.e., a subsequence whose limit exists, as a Galois
representation). Thus, if one knows, as is asserted in the Section Conjecture (GC3),
that rational points and Galois representations (which satisfy certain conditions)
are, in fact, equivalent objects, then one can conclude the existence of a limit of
a sequence of rational points from the existence of the limit of the corresponding
sequence of Galois representations. If one refines this argument somewhat, then
the possibility arises of deriving a new proof of the “Mordell Conjecture”14) for
algebraic curves of high genus from the Section Conjecture (GC3)."

5.3 Moduli spaces of curves and the Teichmüller tower

Next, Grothendieck had the intuition that the moduli stacks of curvesMg,n should be an-
abelian. Note that the caseM0,4 is precisely the case P1

C−{0, 1,∞}. Grothendieck considered
all thesemoduli spaces together, linked by the operations of erasingmarked points and gluing.
As he writes in the Esquisse:

“Indeed, it is more the system of all the multiplicitiesMg,ν for variable g, ν, linked
together by a certain number of fundamental operations (such as the operations
of “plugging holes”, i.e. “erasing” marked points, and of “glueing”, and the in-
verse operations), which are the reflection in absolute algebraic geometry in char-
acteristic zero (for the moment) of geometric operations familiar from the point
of view of topological or conformal “surgery” of surfaces. Doubtless the principal
reason of this fascination is that this very rich geometric structure on the system
of “open” modular multiplicities Mg,ν is reflected in an analogous structure on
the corresponding fundamental groupoids, the “Teichmüller groupoids” b T̂g,ν , and
that these operations on the level of the T̂g,ν are sufficiently intrinsic for the Galois
group Γ of Q/Q to act on this whole “tower” of Teichmüller groupoids, respecting
all these structures."
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Sources

Sections 1 and 2 are standard – see any book on abstract algebra and algebraic topology. The
material in Section 3 was developed by Grothendieck in SGA 1. Sections 4 and 5 come from
Grothendieck’s Esquisse d’un Programme. The most detailed basic explanation of dessins can
be found in Leila Schneps’s article Dessins d’enfants on the Riemann Sphere. I also suggest
reading The Grothendieck Conjecture on the Fundamental Groups of Algebraic Curves by Hiroaki
Nakamura, Akio Tamagawa, and Shinichi Mochizuki.
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Grothendieck and anabelian geometry



Caleb Ji

The 1958 ICM address
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Schemes

Definition (affine scheme)

Given any commutative ring A, define the affine scheme SpecA
to be the locally ringed space consisting of the prime ideals of
A equipped with the Zariski topology. The structure sheaf is
defined by OSpecA(D(f )) = Af on distinguished open sets
D(f ). A scheme is a locally ringed space where every point has
a neighborhood isomorphic to an affine scheme.

”The very notion of a scheme has a childlike simplicity - so
simple, so humble in fact that no one before me had the
audacity to take it seriously.” – Alexander Grothendieck
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Grothendieck at the IHES (1958–1970)
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Grothendieck’s EGA and SGA

EGA

1 Le langage des schémas

2 Étude globale élémentaire de quelques classes de
morphismes

3 Étude cohomologique des faisceaux cohérents

4 Étude locale des schémas et des morphismes de schémas

SGA

1 Revêtements étales et groupe fondamental

2 Cohomologie locale des faisceaux cohérents et théorèmes
de Lefschetz locaux et globaux

3 Schémas en groupes

4 Théorie des topos et cohomologie étale des schémas

5 Cohomologie l-adique et fonctions L

6 Théorie des intersections et théorème de Riemann-Roch

7 Groupes de monodromie en géométrie algébrique
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SGA 1: Revêtements étales et groupe fondamental

Develops the theory of étale morphisms, the étale fundamental group,
fibered categories, descent, ...
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The great turning point, 1970

“Yes, it was a liberation. And, for the first time in my life I
believe, it was then given to me to know the amazed joy and
the fullness of one who feels heavy obstacles detaching from
him whose existence he had not hitherto even foreseen, and
who sees an unsuspected world opening up in front of him,
calling him to discover it.” – AG, La Clef des Songes
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After

Founding Survivre et vivre

Boxing police officers

Being jailed for housing a Japanese Buddhist monk

Going barefoot in the Canadian winter

Founding communes, funding agrarian movements

Awakening his Yin

Asked to be the leader of Nipponzan Myohoji Buddhism

Getting his drivers license after nine failures

Beginning a relationship with a Buddhist nun

...

He settles down as a professor at the University of Montpellier.
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Polyhedra

Begins to teach undergraduate math, c. 1975

1977, 1978: teaches a course on the cube, another on the
icosahedron

The mathematical thought of a child (in so far as it actually
leads to a “discovery”) could be more “valuable” than a
published work (inasmuch as it is mindless and joyless, a routine
publication). Or rather, the one is valuable, and the other is
spiritual and psychological “junk”. ... Polyhedra (take just the
cube or even the icosahedron) are an equally inexhaustible
source of mathematical reflection and insight on every “level”.
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A mysterious principle...

From Grothendieck’s Esquisse d’un Programme:

Whether it happens that such a principle really exists, and even
that we succeed in uncovering it from its cloak of fog, or that it
recedes as we pursue it and ends up vanishing like a Fata
Morgana, I find in it for my part a force of motivation, a rare
fascination, perhaps similar to that of dreams. No doubt that
following such an unformulated call, the unformulated seeking
form, from an elusive glimpse which seems to take pleasure in
simultaneously hiding and revealing itself – can only lead far,
although no one could predict where...
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Grothendieck’s challenge

From Grothendieck’s Esquisse d’un Programme:

The moment seems ripe to rewrite a new version, in modern
style, of Klein’s classic book on the icosahedron and the other
Pythagorean polyhedra. Writing such an exposé on regular
2-polyhedra would be a magnificent opportunity for a young
researcher to familiarise himself with the geometry of polyhedra
as well as their connections with spherical, Euclidean and
hyperbolic geometry and with algebraic curves, and with the
language and the basic techniques of modern algebraic
geometry. Will there be found one, some day, who will seize
this opportunity?
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On Belyi’s theorem

From Grothendieck’s Esquisse d’un Programme:
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The birth of anabelian geometry

From Grothendieck’s Esquisse d’un Programme:
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La Gardette

Spent a year in total solitude at La Gardette, 1979–1980



Caleb Ji

La Longue Marche à travers la Théorie de Galois

Written in 1981
The following quote about it from Pursuing Stacks
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Grothendieck’s letter to Faltings

Anabelian question: How much information about the
isomorphism class of the variety X is contained in the
knowledge of the étale fundamental group?

Conjecture (proven by Mochizuki): πet
1 (C ) determines C

where C is an appropriate hyperbolic curve.

Gerd Faltings Shinichi Mochizuki
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Grothendieck’s anabelian program

From Grothendieck’s Esquisse
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Why did he stop?

A partial answer, from Grothendieck’s Pursuing Stacks:

“Doubtless, the very strongest attraction, the greatest
fascination goes with the “new world” of anabelian algebraic
geometry. It may seem strange that instead, I am indulging in
this lengthy digression on homotopical algebra, which is almost
wholly irrelevant I feel for the Galois-Teichmüller story. The
reason is surely an inner reluctance, an unreadiness to embark
upon a long-term voyage, well knowing that it is so enticing
that I may well be caught in this game for a number of years –
not doing anything else day and night than making love with
mathematics, and maybe sleeping and eating now and then.”
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Questions?
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